The mechanosensitive ion channel Piezo1 contributes to ultrasound neuromodulation

Author:

Zhu Jiejun,Xian Quanxiang,Hou Xuandi,Wong Kin Fung,Zhu Tingting,Chen Zihao,He Dongming,Kala Shashwati,Jing Jianing,Wu Yong,Zhao Xinyi,Li Danni,Guo Jinghui,Qiu Zhihai,Sun LeiORCID

Abstract

AbstractTranscranial low-intensity ultrasound is a promising neuromodulation modality, with the advantages of non-invasiveness, deep penetration, and high spatiotemporal accuracy. However, the underlying biological mechanism of ultrasonic neuromodulation remains unclear, hindering the development of efficacious treatments. Here, the well-known Piezo1, was studied through a conditional knockout mouse model as a major molecule for ultrasound neuromodulationex vivoandin vivo. We showed that Piezo1 knockout in the right motor cortex of mice significantly reduced ultrasound-induced neuronal calcium responses, limb movement and muscle EMG responses. We also detected higher Piezo1 in the central amygdala (CEA) which were found more sensitive to ultrasound stimulation than that of cortex. Knocking out the Piezo1 in CEA neurons showed a significant reduction of response under ultrasound stimulation while knocking out astrocytic Piezo1 showed no obvious changes in neuronal responses. Additionally, we excluded an auditory confound by monitoring auditory cortical activation and using smooth waveform ultrasound with randomized parameters to stimulate P1KO ipsilateral and contralateral regions of the same brain and recording evoked movement in the corresponding limb. Thus, we demonstrate that Piezo1 is functionally expressed in different brain regions, and that it is an important mediator of ultrasound neuromodulation in the brain, laying the ground for further mechanistic studies of ultrasound.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3