Personalized alpha-tACS targeting left posterior parietal cortex modulates visuo-spatial attention and posterior evoked EEG activity

Author:

Radecke Jan-OleORCID,Fiene MarinaORCID,Misselhorn JonasORCID,Herrmann Christoph S.ORCID,Engel Andreas K.ORCID,Wolters Carsten H.ORCID,Schneider Till R.ORCID

Abstract

AbstractBackgroundCovert visuo-spatial attention is marked by the anticipatory lateralization of neuronal alpha activity in the posterior parietal cortex. Previous applications of transcranial alternating current stimulation (tACS) at the alpha frequency, however, were inconclusive regarding the causal contribution of oscillatory activity during visuo-spatial attention.ObjectiveAttentional shifts of behavior and electroencephalography (EEG) after-effects were assessed in a cued visuo-spatial attention paradigm. We hypothesized that parietal alpha-tACS facilitates attention in the ipsilateral visual hemifield. Furthermore, we assumed that modulations of behavior and neurophysiology are related to individual electric field simulations.MethodsWe applied personalized tACS at alpha and gamma frequencies to elucidate the role of oscillatory neuronal activity for visuo-spatial attention. Personalized tACS montages were algorithmically optimized to target individual left and right parietal regions that were defined by an EEG localizer.ResultsBehavioral performance in the left hemifield was specifically increased by alpha-tACS compared to gamma-tACS targeting the left parietal cortex. This hemisphere-specific effect was observed despite the symmetry of simulated electric fields. In addition, visual event-related potential (ERP) amplitudes showed a reduced lateralization over posterior sites induced by left alpha-tACS. Neuronal sources of this effect were localized in the left premotor cortex. Interestingly, accuracy modulations induced by left parietal alpha-tACS were directly related to electric field magnitudes in the left premotor cortex.ConclusionOverall, results corroborate the notion that alpha lateralization plays a causal role in covert visuo-spatial attention and indicate an increased susceptibility of parietal and premotor brain regions of the left dorsal attention network to subtle tACS-neuromodulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3