MuLan-Methyl - Multiple Transformer-based Language Models for Accurate DNA Methylation Prediction

Author:

Zeng Wenhuan,Gautam Anupam,Huson Daniel H.ORCID

Abstract

AbstractTransformer-based language models are successfully used to address massive text-related tasks. DNA methylation is an important epigenetic mechanism and its analysis provides valuable insights into gene regulation and biomarker identification. Several deep learning-based methods have been proposed to identify DNA methylation and each seeks to strike a balance between computational effort and accuracy. Here, we introduce MuLan-Methyl, a deep-learning framework for predicting DNA methylation sites, which is based on five popular transformer-based language models. The framework identifies methylation sites for three different types of DNA methylation, namely N6-adenine, N4-cytosine, and 5-hydroxymethylcytosine. Each of the employed language models is adapted to the task using the “pre-train and fine-tune” paradigm. Pre-training is performed on a custom corpus of DNA fragments and taxonomy lineages using self-supervised learning. Fine-tuning aims at predicting the DNA-methylation status of each type. The five models are used to collectively predict the DNA methylation status. We report excellent performance of MuLan-Methyl on a benchmark dataset. Moreover, we argue that the model captures characteristic differences between different species that are relevant for methylation. This work demonstrates that language models can be successfully adapted to applications in biological sequence analysis and that joint utilization of different language models improves model performance. Mulan-Methyl is open source and we provide a web server that implements the approach.Key pointsMuLan-Methyl aims at identifying three types of DNA-methylation sites.It uses an ensemble of five transformer-based language models, which were pre-trained and fine-tuned on a custom corpus.The self-attention mechanism of transformers give rise to importance scores, which can be used to extract motifs.The method performs favorably in comparison to existing methods.The implementation can be applied to chromosomal sequences to predict methylation sites.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3