HOGVAX: Exploiting Peptide Overlaps to Maximize Population Coverage in Vaccine Design with Application to SARS-CoV-2

Author:

Schulte Sara C.ORCID,Dilthey Alexander T.ORCID,Klau Gunnar W.ORCID

Abstract

AbstractPeptide vaccines present a safe and cost-efficient alternative to traditional vaccines. Their efficacy depends on the peptides included in the vaccine and the ability of major histocompatibility complex (MHC) molecules to bind and present these peptides. Due to the high diversity of MHC alleles, their diverging peptide binding specificities, and physical constraints on the maximum length of peptide vaccine constructs, choosing a set of peptides that effectively achieve immunization across a large proportion of the population is challenging.Here, we present HOGVAX, a combinatorial optimization approach to select peptides that maximize population coverage. The key idea behind HOGVAX is to exploit overlaps between peptide sequences to include a large number of peptides in limited space and thereby also cover rare MHC alleles. We formalize the vaccine design task as a theoretical problem, which we call the Maximum Scoring k-Superstring Problem (MSKS). We show that MSKS is NP-hard, reformulate it into a graph problem using the hierarchical overlap graph (HOG), and present a haplotype-aware variant of MSKS to take linkage disequilibrium between MHC loci into account. We give an integer linear programming formulation for the graph problem and provide an open source implementation.We demonstrate on a SARS-CoV-2 case study that HOGVAX-designed vaccine formulations contain significantly more peptides than vaccine sequences built from concatenated peptides. We predict over 98% population coverage and high numbers of per-individual presented peptides, leading to robust immunity against new pathogens or viral variants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3