Variation in spatial dependencies across the cortical mantle discriminates the functional behaviour of primary and association cortex

Author:

Leech Robert,De Wael Reinder VosORCID,Vasa Frantisek,Xu Ting,Benn R. Austin,Scholz Robert,Braga Rodrigo M.,Milham Michael,Royer Jessica,Bernhardt BorisORCID,Jones Emily,Jefferies Elizabeth,Margulies Daniel,Smallwood Jonathan

Abstract

AbstractRecent theories of cortical organisation maintain that important features of brain function emerge through the spatial arrangement of regions of cortex. For example, areas of association cortex are located in regions of cortex furthest from sensory and motor cortex. Association cortex is also ‘interdigitated’ since adjacent regions can have relatively different patterns of functional connectivity. It is assumed that topographic properties such as distance between cortical regions constrain their functions. For example, large distances between association and sensory and motor systems may enable these areas of cortex to maintain differentiable neural patterns, while an interdigitated organisation may enable association cortex to contain many functional systems in a relatively compact space. We currently lack a formal understanding of how spatial organisation impacts brain function, limiting the ability to leverage cortical topography to facilitate better interpretations of a regions function. Here we use variograms, a quantification of spatial autocorrelation, to develop a cortex-wide profile of how functional similarity changes as a function of the distance between regions. We establish that function changes gradually within sensory and motor cortex as the distance between regions increases, while in association cortex function changes rapidly over shorter distances. Subsequent analysis suggests these differential classes of spatial dependency are related to variation in intracortical myelin between sensory motor and association cortex. Our study suggests primary and association cortex are differentiated by the degree to which function varies over space, emphasising the need to formally account for spatial properties when estimating a system’s contribution to cognition and behaviour.Significance statementThe spatial arrangements of regions in the human brain are hypothesised to underpin important features of a brain regions function. Currently, however, we lack a formal understanding of how topography shapes brain function, limiting our ability to leverage topographical perspectives to inform better theories of brain function. Here we use a formal mathematical approach to establish that in regions of association cortex function varies across the cortex more rapidly than in sensory and motor cortex, a phenomenon linked to levels of intracortical myelin. This result highlights how topographical features distinguish between cortical regions with different functional profiles and provides a formal account of how spatial differences support different features of brain function.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3