Implicit motor adaptation and perceived hand position without proprioception: A kinesthetic error may be derived from efferent signals

Author:

Tsay Jonathan S.ORCID,Chandy Anisha M.,Chua Romeo,Miall R. ChrisORCID,Cole Jonathan,Farnè Alessandro,Ivry Richard B.ORCID,Sarlegna Fabrice R.ORCID

Abstract

AbstractOur ability to produce successful goal-directed actions involves multiple learning processes. Among these, implicit adaptation is of utmost importance, keeping our sensorimotor system well-calibrated in response to changes in the body and environment. Implicit adaptation is assumed to be driven by a sensory prediction error, the difference between the predicted and actual sensory consequences of a movement. Whereas most models of implicit adaptation have focused on how visual information defines the sensory prediction error, we have recently proposed that this error signal is kinesthetic, the difference between the desired and perceived hand position, with adaptation serving to align these two signals and restore optimal motor performance (Tsay et al., 2022). Here, we examined implicit adaptation and kinesthetic perception in rare individuals who lack proprioceptive signals from the upper limbs. We used a visuomotor rotation task designed to isolate implicit adaptation while simultaneously probing the participants’ perceived hand position. Consistent with prior work, control participants exhibited robust implicit adaptation and the signature of kinesthetic re-alignment, an initial bias in perceived hand position towards the visual cursor and a gradual shift back to the movement goal. Strikingly, the time course of both implicit adaptation and kinesthetic re-alignment was preserved in the deafferented group, suggesting that proprioceptive afferents are not necessary for implicit adaptation and kinesthetic re-alignment. We propose that a kinesthetic prediction error derived from efferent motor signals is sufficient to drive implicit adaptation and to re-algin a biased percept of hand position with the movement goal.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Congruent visual cues speed dynamic motor adaptation;Journal of Neurophysiology;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3