Maintained imbalance of triglycerides, apolipoproteins, energy metabolites and cytokines in long-term COVID-19 syndrome (LTCS) patients

Author:

Berezhnoy Georgy,Bissinger Rosi,Liu Anna,Cannet Claire,Schaefer Hartmut,Kienzle Katharina,Bitzer Michael,Häberle Helene,Göpel Siri,Trautwein ChristophORCID,Singh YogeshORCID

Abstract

AbstractDeep metabolomic, proteomic and immunologic phenotyping of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients have matched a wide diversity of clinical symptoms with potential biomarkers for coronavirus disease 2019 (COVID-19). Within here, several studies described the role of metabolites, lipoproteins and inflammation markers during infection and in recovered patients. In fact, after SARS-CoV-2 viral infection almost 20-30% of patients experience persistent symptoms even after 12 weeks of recovery which has been defined as long-term COVID-19 syndrome (LTCS). Emerging evidence revealed that a dysregulated immune system and persisting inflammation could be one of the key drivers of LTCS. However, how these small biomolecules such as metabolites, lipoprotein, cytokines and chemokines altogether govern pathophysiology is largely underexplored. Thus, a clear understanding how these parameters into an integrated fashion could predict the disease course may help to stratify LTCS patients from acute COVID-19 or recovered specimen and would help to elucidate a potential mechanistic role of these biomolecules during the disease course. Here, we report an integrated analysis of blood serum and plasma by in vitro diagnostics research NMR spectroscopy and flow cytometry-based cytokine quantification in a total of 125 individuals (healthy controls (HC; n=73), recovered (n=12), acute (n=7) and LTCS (n=33)). We identified that in LTCS patients lactate and pyruvate were significantly different from either healthy controls or acute COVID-19 patients. Further correlational analysis of cytokines and metabolites indicated that creatine, glutamine, and high-density lipoprotein (HDL) phospholipids were distributed differentially amongst patients or individuals. Of note, triglycerides and several lipoproteins (apolipoproteins Apo-A1 and A2) in LTCS patients demonstrate COVID-19-like alterations compared to HC. Interestingly, LTCS and acute COVID-19 samples were distinguished mostly by their creatinine, phenylalanine, succinate, 3-hydroxybutyrate (3-HB) and glucose concentrations, illustrating an imbalanced energy metabolism. Most of the cytokines and chemokines were present at low levels in LTCS patients compared with HC except IL-18 chemokine, which tended to be higher in LTCS patients and correlated positively with several amino acids (creatine, histidine, leucine, and valine), metabolites (lactate and 3-HB) and lipoproteins. The identification of these persisting plasma metabolites, lipoprotein and inflammation alterations will help to better stratify LTCS patients from other diseases and could help to predict ongoing severity of LTCS patients.Graphical abstractLayman summary & significance of the researchAlmost 20-30% of individuals infected with the SARS-CoV-2 virus regardless of hospitalization status experience long-term COVID-19 syndrome (LTCS). It is devasting for millions of individuals worldwide and hardly anything is known about why some people experience these symptoms even after 3 to 12 months after the acute phase. In this, we attempted to understand whether dysregulated metabolism and inflammation could be contributing factors to the ongoing symptoms in LTCS patients. Total blood triglycerides and the Cory cycle metabolites (lactate and pyruvate) were significantly higher, lipoproteins (Apo-A1 and A2) were drastically lower in LTCS patients compared to healthy controls. Correlation analysis revealed that either age or gender are positively correlated with several metabolites (citrate, glutamate, 3-hydroxybutyrate, glucose) and lipoproteins (Apo-A1, HDL Apo-A1, LDL triglycerides) in LTCS patients. Several cytokines and chemokines were also positively correlated with metabolites and lipoproteins thus, dysregulation in metabolism and inflammation could be a potential contributory factor for LTCS symptoms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3