eIF2B localisation and its regulation during the integrated stress response is cell type specific

Author:

Hanson Filipe M.,Ribeiro de Oliveira Madalena I.,Cross Alison K.,Allen K. ElizabethORCID,Campbell Susan G.ORCID

Abstract

AbstractEukaryotic initiation factor 2B (eIF2B) is a master regulator of translation control. eIF2B recycles inactive eIF2-GDP to active eIF2-GTP. Under transient/acute cellular stress, a family of kinases phosphorylate the alpha subunit of eIF2 (eIF2α-P[S51]) activating the integrated stress response (ISR). This response pathway inhibits eIF2B activity resulting in overall translation attenuation and reprogramming of gene expression to overcome the stress. The duration of an ISR programme can dictate cell fate wherein chronic activation has pathological outcomes. Vanishing white matter disease (VWMD) is a chronic ISR-related disorder linked to mutations in eIF2B. eIF2B is vital to all cell types, yet VWMD eIF2B mutations primarily affect astrocytes and oligodendrocytes suggesting cell type-specific functions of eIF2B. Regulation of the cytoplasmic localisation of eIF2B (eIF2B bodies) has been implicated in the ISR. Here, we highlight the cell type specific localisation of eIF2B within neuronal and glial cell types. Our analyses revealed that each cell type possesses its own steady-state repertoire of eIF2B bodies with varied subunit composition and activity. We also demonstrate that neural and glial cell types respond similarly to acute induction of the ISR whilst a chronic ISR programme exerts cell type-specific differences. Regulatory composition of eIF2B bodies is suggested to be differentially modulated in a manner that correlates to the action of acute and chronic ISR. We also highlight a cell type specific response of the ISR inhibitor ISRIB on eIF2B localisation and activity.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Signaling plasticity in the integrated stress response;Frontiers in Cell and Developmental Biology;2023-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3