Ultra-fast genome-wide inference of pairwise coalescence times

Author:

Schweiger RegevORCID,Durbin RichardORCID

Abstract

AbstractThe pairwise sequentially Markovian coalescent (PSMC) algorithm and its extensions infer the coalescence time of two homologous chromosomes at each genomic position. This inference is utilized in reconstructing demographic histories, detecting selection signatures, genome-wide association studies, constructing ancestral recombination graphs and more. Inference of coalescence times between each pair of haplotypes in a large dataset is of great interest, as they may provide rich information about the population structure and history of the sample.We introduce a new method,Gamma-SMC, which is>14 times faster than current methods. To obtain this speed up, we represent the posterior coalescence time distributions succinctly as a Gamma distribution with just two parameters; while in PSMC and its extensions, these are held as a vector over discrete intervals of time. Thus, Gamma-SMC has constant time complexity per site, without dependence on a number of discrete time states. Additionally, due to this continuous representation, our method is able to infer times spanning many orders of magnitude, and as such is robust to parameter misspecification. We describe how this approach works, illustrate its performance on simulated and real data, and use it to study recent positive selection in the 1000 Genomes Project dataset.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3