Author:
Medrano Mireia,Allaoui Wissal,Van Bulck Mathias,Thys Sofie,Makrini-Maleville Leila,Seuntjens Eve,De Vos Winnok H.,Valjent Emmanuel,Gaszner Bálazs,Van Eeckhaut Ann,Smolders Ilse,De Bundel Dimitri
Abstract
AbstractNeuromedin U (NMU) is an evolutionary conserved neuropeptide that has been implicated in multiple processes, such as circadian regulation, energy homeostasis, reward processing and stress coping. Although central expression of NMU has been addressed previously, the lack of specific and sensitive tools has prevented a comprehensive characterization of NMU-expressing neurons in the brain. We have generated a knock-in mouse model constitutively expressing Cre recombinase under theNmupromoter. We have validated the model using a multi-level approach based on quantitative reverse-transcription polymerase chain reactions,in situhybridization, a reporter mouse line and an adenoviral vector driving Cre-dependent expression of a fluorescent protein. Using the Nmu-Cre mouse, we performed a complete mapping of NMU expression in adult mouse brain, unveiling a potential midline NMU modulatory circuit with the ventromedial hypothalamic nucleus (VMH) as a key node. Moreover, immunohistochemical analysis suggested that NMU neurons in the VMH mainly constitute a unique population of hypothalamic cells. Taken together, our results suggest that Cre expression in the Nmu-Cre mouse model largely reflects NMU expression in the adult mouse brain, without altering endogenous NMU expression. Thus, the Nmu-Cre mouse model is a powerful and sensitive tool to explore the role of NMU neurons in mice.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献