Prospective Evaluation of a 90-day Mortality Prediction Model: From Silent Pilots to Real Time Deployment in the EHR*

Author:

Rossi Lorenzo A.ORCID,Roberts Laura,Zachariah Finly

Abstract

AbstractPrognostication in oncology is increasingly difficult due to the rapid evolution of therapies with significant improvement of survival. Accurate prognostication is essential to provide optimal, value-driven end of life care for cancer patients, and can promote goals of care (GOC) conversations with the potential to minimize chemotherapy or ICU utilization in the last weeks of life, and possibly increase hospice admission and length of stay.1There are several recent publications on the application of machine learning for prognostication.2,3We developed a 90-day mortality prediction model trained with data in the Electronic Health Records (EHR). After a non-interventional pilot stage, we deployed the model in February 2021 in the real-time Electronic Health Record Epic infrastructure of our cancer center. Here we present the model and evaluate its overall performance for the first 7.5 months since the go-live and outline our evaluation process for the next stages.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3