Collateral RNA cleavage by CRISPR-Cas13 allows selective cell elimination

Author:

Bot Jorik F.ORCID,Zhao Zhihan,Kammeron Darnell,Shang Peng,Geijsen Niels

Abstract

AbstractCRISPR-Cas13 systems are unique among Class II CRISPR systems, as they exclusively target RNA.In vitroand in prokaryotic cells, Cas13 cleaves both target and non-target RNA indiscriminately upon activation by a specific target RNA. This property has been exploited for development of diagnostic nucleic acid detection tools. In eukaryotic cells, CRISPR-Cas13 initially seemed to exclusively cleave the target RNA and consequently, CRISPR-Cas13 has been adopted as a specific RNA knockdown tool. Recently, several groups have reported unexpected toxicity or collateral cleavage when using CRISPR-Cas13 in eukaryotic cells, which seems difficult to reconcile with the reported target specificity. To understand these seemingly contradicting findings, we explored the collateral cleavage activity of six Cas13 systems, and show that only the most active orthologin vitro, LbuCas13a, exhibits strong collateral RNA cleavage activity in human cells. LbuCas13a displayed collateral cleavage in all tested cell lines, targeting both exogenous and endogenous transcripts and using different RNP delivery methods. Using Nanopore sequencing, we found that cytoplasmic RNAs are cleaved without bias by LbuCas13a. Furthermore, the cleavage sites are highly specific and often present in Uracil containing single stranded RNA loops of stem-loop structures. In response to collateral RNA cleavage, cells upregulate stress and innate immune response genes and depending on target transcript levels, RNA degradation resulted in apoptotic cell death. We demonstrate that LbuCas13a can serve as a cell selection tool, killing cells in a target RNA specific manner. As such, CRISPR-Cas13 is a promising new technology that might be useful in anti-tumor applications.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3