Label-Free Mammalian Cell Tracking Enhanced by Precomputed Velocity Fields

Author:

Han YueORCID,Lei Yang,Shkolnikov Viktor,Xin Daisy,Barcelo Steven,Allebach Jan,Delp Edward J.ORCID

Abstract

AbstractLabel-free cell imaging, where the cell is not “labeled” or modified by fluorescent chemicals, is an important research area in the field of biology. It avoids altering the cell’s properties which typically happens in the process of chemical labeling. However, without the contrast enhancement from the label, the analysis of label-free imaging is more challenging than label-based imaging. In addition, it provides few human interpretable features, and thus needs machine learning approaches to help with the identification and tracking of specific cells. We are interested in label-free phase contrast imaging to track cells flowing in a cell sorting device where images are acquired at 500 frames/s. Existing Multiple Object Tracking (MOT) methods face four major challenges when used for tracking cells in a microfluidic sorting device: (i) most of the cells have large displacements between frames without any overlap; (ii) it is difficult to distinguish between cells as they are visually similar to each other; (iii) the velocities of cells vary with the location in the device; (iv) the appearance of cells may change as they move in and out of the focal plane of the imaging sensor that observes the isolation process. In this paper, we introduce a method for tracking cells in a predefined flow in the sorting device via phase contrast microscopy. Our proposed method is based on DeepSORT and YOLOv4 and exploits prior knowledge of a cell’s velocity to assist tracking. We modify the Kalman filter in DeepSORT to accommodate a non-constant velocity motion model and integrate a representative velocity field obtained from fluid dynamics into the Kalman filter. The experimental results show that our proposed method outperforms several MOT methods for tracking cells in the sorting device.

Publisher

Cold Spring Harbor Laboratory

Reference38 articles.

1. Label-free imaging flow cytometry for analysis and sorting of enzymatically dissociated tissues;Scientific reports,2022

2. Segmentation of phase contrast microscopy images based on multi-scale local basic image features histograms;Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization,2017

3. Analysis of noise in phase contrast MR imaging

4. Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes;Nature communications,2021

5. ElemCor: accurate data analysis and enrichment calculation for high-resolution LC-MS stable isotope labeling experiments

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3