Prediction of in-hospital mortality among intensive care unit patients using modified daily Laboratory-based Acute Physiology Scores, version 2 (LAPS2)

Author:

Kohn RachelORCID,Weissman Gary E.ORCID,Wang Wei,Ingraham Nicholas E.ORCID,Scott Stefania,Bayes Brian,Anesi George L.ORCID,Halpern Scott D.ORCID,Kipnis PatriciaORCID,Liu Vincent X.,Dudley R. AdamsORCID,Kerlin Meeta PrasadORCID

Abstract

ABSTRACTBackgroundMortality prediction for intensive care unit (ICU) patients frequently relies on single acuity measures based on ICU admission physiology without accounting for subsequent clinical changes.ObjectivesEvaluate novel models incorporating modified admission and daily, time-updating Laboratory-based Acute Physiology Scores, version 2 (LAPS2) to predict in-hospital mortality among ICU patients.Research designRetrospective cohort study.SubjectsAll ICU patients in five hospitals from October 2017 through September 2019.MeasuresWe used logistic regression, penalized logistic regression, and random forest models to predict in-hospital mortality within 30 days of ICU admission using admission LAPS2 alone in patient-level and patient-day-level models, or admission and daily LAPS2 at the patient-day level. Multivariable models included patient and admission characteristics. We performed internal-external validation using four hospitals for training and the fifth for validation, repeating analyses for each hospital as the validation set. We assessed performance using scaled Brier scores (SBS), c-statistics, and calibration plots.ResultsThe cohort included 13,993 patients and 120,101 ICU days. The patient-level model including the modified admission LAPS2 without daily LAPS2 had an SBS of 0.175 (95% CI 0.148-0.201) and c-statistic of 0.824 (95% CI 0.808-0.840). Patient-day-level models including daily LAPS2 consistently outperformed models with modified admission LAPS2 alone. Among patients with <50% predicted mortality, daily models were better calibrated than models with modified admission LAPS2 alone.ConclusionsModels incorporating daily, time-updating LAPS2 to predict mortality among an ICU population perform as well or better than models incorporating modified admission LAPS2 alone.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3