Linking fluid-axons interactions to the macroscopic fluid transport properties of the brain

Author:

Yuan Tian,Zhan Wenbo,Dini Daniele

Abstract

ABSTRACTMany brain disorders, including Alzheimer’s Disease and Parkinson’s Disease, and drug delivery procedures are linked to fluid transport in the brain; yet, while neurons are extremely soft and can be easily deformed, how the microscale channel flow interacts with the neuronal structures (especially axons) deformation and how this interactions affect the macroscale tissue function and transport properties is poorly understood. Misrepresenting these relationships may lead to the erroneous prediction of e.g. disease spread, drug delivery, and nerve injury in the brain. However, understanding fluid-neuron interactions is an outstanding challenge because the behaviours of both phases are not only dynamic but also occur at an extremely small length scale (the width of flow channel is ∼100 nm), which cannot be captured by the state-of-the-art experimental techniques. Here, by explicitly simulating dynamics of the flow and axons at the microstructural level, we, for the first time, establish the link between micromechanical tissue response to the physical laws governing the macroscopic transport property of the brain white matter. We found that interactions between axons and the interstitial flow is very strong, thus playing an essential role in the brain fluid/mass transport. Furthermore, we proposed the first anisotropic pressure-dependent permeability tensor informed by microstructural dynamics for more accurate brain modelling at the macroscale, and analysed the effect of the variation of the microstructural parameters that influence such tensor. These findings will sheds light on some unsolved issues linked to brain functions and medical treatments relying on intracerebral transport, and the mathematical model provides a framework to more realistically model the brain and design the brain-tissue-like biomaterials.Statement of significanceThis study reveals how neurons interact with the fluid flowing around them and how these microscale interactions affect macroscale transport behaviour of the brain tissue. The findings provide unprecedented insights into some unsolved issues linked to brain functions and medical treatments relying on intracerebral fluid transport. Furthermore, we, for the first time, established a microstructure-informed permeability tensor as a function of local hydraulic pressure and pressure gradient for the brain tissue, which inherently captures the dynamic transport property of the brain. This study is a cornerstone to advance the predicting accuracy of brain tissue transport property and neural tissue engineering.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3