Understanding the Free Energy Landscape of Phase Separation in Lipid Bilayers using Molecular Dynamics

Author:

Poruthoor Ashlin J.ORCID,Sharma AksharaORCID,Grossfield AlanORCID

Abstract

ABSTRACTLiquid-liquid phase separation (LLPS) inside the cell often results in biological condensates that can critically impact cell homeostasis. Such phase separation events occur in multiple parts of cells, including the cell membranes, where the so-called “lipid raft” hypothesis posits the formation of ordered domains floating in a sea of disordered lipids. The resulting lipid domains often have functional roles. However, the thermodynamics of lipid phase separation and their resulting mechanistic effects on cell function and dysfunction are poorly understood. Understanding such complex phenomena in cell membranes, with their diverse lipid compositions, is exceptionally difficult. For this reasons, simple model systems that can recapitulate similar behavior are widely used to study this phenomenon. Despite these simplifications, the timescale and and length scales of domain formation pose a challenge for molecular dynamics (MD) simulations. Thus, most MD studies focus on spontaneous lipid phase separation — essentially measuring the sign (but not the amplitude) of the free energy change upon separation — rather than directly interrogating the thermodynamics. Here, we propose a proof-of-concept pipeline that can directly measure this free energy by combining coarse-grained MD with enhanced sampling protocols using a novel collective variable. This approach will be a useful tool to help connect the thermodynamics of phase separation with the mechanistic insights already available from molecular dynamics simulations.SIGNIFICANCEStandard molecular dynamics simulations can determine the sign the free energy change upon phase separation, but not the amplitude. We present a new method to determine the phase separation free energy for lipid membranes, based on a enhanced sampling using the weighted ensemble method combined with a novel collective variable, validated using coarse-grained simulations applied to several simple systems. The new method will be valuable as a way to develop models that connect molecular-level structural features to the thermodynamics of phase separation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3