Export of diverse and bioactive peptides through a type I secretion system

Author:

Kim Sun-YoungORCID,Parker Jennifer K.ORCID,Gonzalez-Magaldi MonicaORCID,Telford Mady S.ORCID,Leahy Daniel J.ORCID,Davies Bryan W.ORCID

Abstract

AbstractMicrocins are peptide antibiotics secreted by Gram-negative bacteria that inhibit the growth of neighboring microbes. They are exported from the cytosol to the environment in a one-step process through a specific type I secretion system (T1SS). While the rules governing export of natural or non-native substrates have been resolved for T1SSs that secrete large proteins, relatively little is known about substrate requirements for peptides exported through T1SSs that secrete microcins. Here, we investigate the prototypic microcin V T1SS fromEscherichia coliand show it can export a remarkably wide range of natural and synthetic peptides. We demonstrate that secretion through this system is not affected by peptide charge or hydrophobicity and appears only constrained by peptide length. A varied range of bioactive peptides, including an antibacterial peptide, a microbial signaling factor, a protease inhibitor, and a human hormone, can all be secreted and elicit their intended biological effect. Secretion through this system is not limited toE. coli, and we demonstrate its function in additional Gram-negative species that can inhabit the gastrointestinal tract. Our findings uncover the highly promiscuous nature of peptide export thorough the microcin V T1SS, which has implications for native cargo capacity and use of Gram-negative bacteria for peptide research and delivery.ImportanceMicrocin type I secretion systems in Gram-negative bacteria transport antibacterial peptides from the cytoplasm to the extracellular environment in single step. In nature, each microcin secretion system is generally paired with a specific peptide. We know little about the export capacity of these transporters and how peptide sequence influences secretion. Here, we investigate the microcin V type I secretion system. Remarkably, our studies show this system can export diverse peptides and is only limited by peptide length. Furthermore, we demonstrate that various bioactive peptides can be secreted, and this system can be used in Gram-negative species that colonize the gastrointestinal tract. These finding expand our understanding of secretion through type I systems and their potential uses in peptide applications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3