Accurate and fast graph-based pangenome annotation and clustering with ggCaller

Author:

Horsfield Samuel T.ORCID,Croucher Nicholas J.ORCID,Lees John A.ORCID

Abstract

AbstractBacterial genomes differ in both gene content and sequence mutations, which can cause important clinical phenotypic differences such as vaccine escape or antimicrobial resistance. To identify and quantify important variants, all genes within a population must be predicted, functionally annotated and clustered, representing the ‘pangenome’. Despite the volume of genome data available, gene prediction and annotation are currently conducted in isolation on individual genomes, which is computationally inefficient and frequently inconsistent across genomes. Here, we introduce the open-source software graph-gene-caller (ggCaller;https://github.com/samhorsfield96/ggCaller). ggCaller combines gene prediction, functional annotation and clustering into a single step using population-wide de Bruijn Graphs, removing redundancy in gene annotation, and resulting in more accurate gene predictions and orthologue clustering. We applied ggCaller to simulated and real-world bacterial genome datasets, comparing it to current state-of-the-art tools. ggCaller is ~50x faster with equivalent or greater accuracy, particularly in datasets with complex sources of error, such as assembly contamination or fragmentation. ggCaller is also an important extension to bacterial genome-wide association studies, enabling querying of annotated graphs for functional analyses. We highlight this application by functionally annotating DNA sequences with significant associations to tetracycline and macrolide resistance inStreptococcus pneumoniae, identifying key resistance determinants that were missed when using only a single reference genome. ggCaller is a novel bacterial genome analysis tool with applications in bacterial epidemiology and evolutionary study.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3