Functional domain annotation by structural similarity

Author:

Mirzavand Borujeni PooryaORCID,Salavati RezaORCID

Abstract

AbstractTraditional automated insilicofunctional annotation uses tools like Pfam that rely on sequence similarities for domain annotation. However, structural conservation often exceeds sequence conservation, suggesting an untapped potential for improved annotation through structural similarity. This approach was previously overlooked before the AlphaFold2 introduction due to the need for more high-quality protein structures. Leveraging structural information especially holds significant promise to enhance accurate annotation in diverse proteins across phylogenetic distances.In our study, we evaluated the feasibility of annotating Pfam domains based on structural similarity. To this end, we created a database from segmented full-length protein structures at their domain boundaries, representing the structure of Pfam seeds. We usedTrypanosomabrucei, a phylogenetically distant protozoan parasite as our model organism. Its structome was aligned with our database using Foldseek, the ultra-fast structural alignment tool, and the top non-overlapping hits were annotated as domains. Our method identified over 400 new domains in the T.bruceiproteome, surpassing the benchmark set by sequence-based tools, Pfam and Pfam-N, with some predictions validated manually. We have also addressed limitations and suggested avenues for further enhancing structure-based domain annotation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3