Characterizing Primary transcriptional responses to short term heat shock in paired fraternal lymphoblastoid lines with and without Down syndrome

Author:

Cardiello Joseph F.,Westfall Jessica,Dowell Robin,Allen Mary Ann

Abstract

AbstractHeat shock stress induces genome wide changes in transcription regulation, activating a coordinated cellular response to enable survival. Using publicly available transcriptomic and proteomic data sets comparing individuals with and without trisomy 21, we noticed many heat shock genes are up-regulated in blood samples from individuals with trisomy 21. Yet no major heat shock response regulating transcription factor is encoded on chromosome 21, leaving it unclear why trisomy 21 itself would cause a heat shock response, or how it would impact the ability of blood cells to subsequently respond when faced with heat shock stress. To explore these issues in a context independent of any trisomy 21 associated co-morbidities or developmental differences, we characterized the response to heat shock of two lymphoblastoid cell lines derived from brothers with and without trisomy 21. To carefully compare the chromatin state and the transcription status of these cell lines, we measured nascent transcription, chromatin accessibility, and single cell transcript levels in the lymphoblastoid cell lines before and after acute heat shock treatment. The trisomy 21 cells displayed a more robust heat shock response after just one hour at 42°C than the matched disomic cells. We suggest multiple potential mechanisms for this increased heat shock response in lymphoblastoid cells with trisomy 21 including the possibility that cells with trisomy 21 may exist in a hyper-reactive state due to chronic stresses. Whatever the mechanism, abnormal heat shock response in individuals with Down syndrome may hobble immune responses during fever and contribute to health problems in these individuals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3