Developmental diet alters the fecundity-longevity relationship and age-related gene expression inDrosophila melanogaster

Author:

Collins David H.ORCID,Prince David C.,Donelan Jenny L.,Chapman Tracey,Bourke Andrew F. G.ORCID

Abstract

ABSTRACTThe standard evolutionary theory of ageing predicts a negative relationship (trade-off) between fecundity and longevity. However, this relationship can become positive: (i) under the influence of longevity-enhancing mutations; (ii) when individuals have unequal resources; and (iii) in eusocial insects, in which reproductive queens outlive less- or non-reproductive workers. Developmental diet is likely to be central to determining trade-offs as it affects key fitness traits such as adult body size, but its exact role remains uncertain. For example, inDrosophila melanogasterfruit flies, changes in adult diet can affect fecundity, longevity, and gene expression throughout life, but it is unknown how changes in developmental (larval) diet affect fecundity-longevity relationships or gene expression in adults. UsingD. melanogaster, we therefore tested the hypothesis that variation in developmental diet alters the directionality of fecundity-longevity relationships in adults, and characterised associated gene expression changes. We rearedD. melanogasterlarvae on low (20%), medium (100%), and high (120%) SYA (Sugar Yeast Agar) diets, and transferred adult females developing from these larvae to a common (110% SYA) adult diet. We measured life-time fertility (realised fecundity) and longevity of individual adult females and, using mRNA-seq, profiled gene expression changes across two time-points. Adult females raised on the different larval diets exhibited fecundity-longevity relationships that were significantly different in directionality, i.e., varied from positive to negative, despite minimal differences in mean life-time fertility or longevity. Treatments also differed in age-related gene expression, including expression of genes known to be associated with ageing. Hence, this study shows that the sign of fecundity-longevity relationships in adult insects can be altered and even reversed by variation in larval diet quality. Furthermore, larval diet quality may be a key mechanistic factor underpinning positive fecundity-longevity relationships observed in species such as eusocial insects.

Publisher

Cold Spring Harbor Laboratory

Reference71 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3