Effects of Dopamine Receptor Antagonists and Radiation on Mouse Neural Stem/Progenitor Cells

Author:

He LingORCID,Bhat Kruttika,Ioannidis Angeliki,Pajonk FrankORCID

Abstract

AbstractBackgroundDopamine receptor antagonists are psychotropic drugs that have been originally developed against psychiatric disorders. We recently identified dopamine receptor antagonists as potential anti-cancer agents and some have entered clinical trials against glioblastoma. Radiotherapy is known to cause cognitive impairment in patients receiving cranial irradiation through the elimination of neural stem/progenitor cells and subsequent loss of neurogenesis.MethodsUsing transgenic mice that report the presence of neural stem/progenitor cells through Nestin promoter-driven expression of enhanced green fluorescent protein, the effects of dopamine receptor antagonists alone or in combination with radiation on murine neural stem/progenitor cells were assessed in sphere-formation assays, flow cytometry and immunofluorescencein vitroandin vivo.ResultsWe report that several dopamine receptor antagonists show sex-dependent effects on neural stem/progenitor cells bothin vitroandin vivo. Hydroxyzine, trifluoperazine, amisulpride, nemonapride or quetiapine alone or in combination with radiation significantly increased the number of neural stem/progenitor cells in female neurospheres but not in male mice. Dopamine receptor antagonists either protected neural stem/progenitor cells from radiation or expanded the stem cell pool, thus indicating that this combination therapy against glioblastoma will not increase radiation-induced cognitive decline through increasing elimination of neural stem/progenitor cells and subsequent loss of neurogenesis.ConclusionsWe conclude that a therapeutic window for dopamine receptor antagonists in combination with radiation potentially exist, making it a novel combination therapy against glioblastoma. Normal tissue toxicity of this combination potentially differs depending on age and sex and should be taken into consideration when designing clinical trials.Key Points- Neural stem/progenitor cells show sex-dependent sensitivity to dopamine receptor antagonists- Dopamine receptor antagonists active against GBM increase Neural stem/progenitor cells countsImportance of the StudyCombination therapy of dopamine receptor antagonists with radiation have entered clinical trials against glioblastoma but the normal tissue toxicity of this combination has not been fully explored yet. Here we present evidence that some dopamine receptor antagonists show sex-dependent effects on neural stem/progenitor cells either by protecting neural stem/progenitor cells from radiation or inducing an expansion of the stem cell pool, suggesting that this combination therapy against glioblastoma will not increase radiation-induced cognitive decline through increasing elimination of neural stem/progenitor cells and subsequent loss of neurogenesis. Normal tissue toxicity of this combination potentially differs depending on age and sex and should be further explored in clinical trials.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3