A Novel Explainable Fuzzy Clustering Approach for fMRI Dynamic Functional Network Connectivity Analysis

Author:

Ellis Charles A.ORCID,Miller Robyn L.ORCID,Calhoun Vince D.ORCID

Abstract

AbstractResting state functional magnetic resonance imaging (rs-fMRI) dynamic functional network connectivity (dFNC) analysis has illuminated brain network interactions across many neuropsychiatric disorders. A common analysis approach involves using hard clustering methods to identify transitory states of brain activity, and in response to this, other methods have been developed to quantify the importance of specific dFNC interactions to identified states. Some of these methods involve perturbing individual features and examining the number of samples that switch states. However, only a minority of samples switch states. As such, these methods actually identify the importance of dFNC features to the clustering of a subset of samples rather than the overall clustering. In this study, we present a novel approach that more capably identifies the importance of each feature to the overall clustering. Our approach uses fuzzy clustering to output probabilities of each sample belonging to states and then measures their Kullback-Leibler divergence after perturbation. We show the viability of our approach in the context of schizophrenia (SZ) default mode network analysis, identifying significant differences in state dynamics between individuals with SZ and healthy controls. We further compare our approach with an existing approach, showing that it captures the effects of perturbation upon most samples. We also find that interactions between the posterior cingulate cortex (PCC) and the anterior cingulate cortex and the PCC and precuneus are important across methods. We expect that our novel explainable clustering approach will enable further progress in rs-fMRI analysis and to other clustering applications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3