Abstract
AbstractSelective sodium-glucose cotransporter 2 (SGLT2) plays an important role in glucose reabsorption. SGLT2 inhibitors suppress glucose reabsorption from the kidneys, thus reducing blood glucose levels in type 2 diabetes patients. We and other groups have developed several SGLT2 inhibitors starting from a natural product, phlorizin, but their action mechanisms remain unknown. Here, we elucidated the physiological hSGLT2–MAP17 complex structures bound to five SGLT2 inhibitors using single-particle cryo-electron microscopy. Canagliflozin, dapagliflozin, TA-1887, and sotagliflozin were bound in the outward-facing structure, whereas phlorizin was bound in the inward-open structure. The phlorizin–hSGLT2 interaction biochemically exhibited biphasic binding. Phlorizin weakly binds, via the phloretin motif, from its intracellular side near the Na+-binding site, while strongly interacts from its extracellular side. Unexpectedly, bound Na+stabilizes the outward-open conformation, while its release allows the transporter to adopt inward-open state. Our results first visualized the Na+-binding and inward-open conformation of hSGLT2–MAP17, clarifying the unprecedented Na+-dependent sugar transport mechanism with MAP17 acting as a scaffold, and may pave the way for development of next-generation SGLT inhibitors.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献