Artificial intelligence-driven morphology-based enrichment of malignant cells from body fluid

Author:

Mavropoulos Anastasia,Johnson Chassidy,Lu Vivian,Nieto Jordan,Schneider Emilie,Saini Kiran,Phelan Michael L.,Hsie Linda,Wang Maggie,Cruz Janifer,Mei Jeanette,Kim Julie,Lian Zhouyang,Li Nianzhen,Boutet Stephane C.,Wong-Thai Amy,Yu Weibo,Lu Qing-Yi,Kim Teresa,Geng Yipeng,Masaeli Maddison (Mahdokht),Lee Thomas D.ORCID,Rao Jianyu

Abstract

ABSTRACTCell morphology is a fundamental feature used to evaluate patient specimens in pathological analysis. However, traditional cytopathology analysis of patient effusion samples is limited by low tumor cell abundance coupled with high background of non-malignant cells, restricting the ability for downstream molecular and functional analyses to identify actionable therapeutic targets. We applied the Deepcell platform that combines microfluidic sorting, brightfield imaging, and real-time deep learning interpretations based on multi-dimensional morphology to enrich carcinoma cells from malignant effusions without cell staining or labels. Carcinoma cell enrichment was validated with whole genome sequencing and targeted mutation analysis, which showed higher sensitivity for detection of tumor fractions and critical somatic variant mutations that were initially at low-levels or undetectable in pre-sort patient samples. Combined, our study demonstrates the feasibility and added value of supplementing traditional morphology-based cytology with deep learning, multi-dimensional morphology analysis, and microfluidic sorting.

Publisher

Cold Spring Harbor Laboratory

Reference62 articles.

1. An Unbiased Cell Morphology–Based Screen for New, Biologically Active Small Molecules

2. Morphological Changes of Cisplatin-resistant Human Breast Cancer MCF-7 Cell Line;International Journal of Integrated Health Sciences,2017

3. Regev, A. et al. The Human Cell Atlas. Elife 6 (2017). https://doi.org:10.7554/eLife.27041

4. Systematic exploration of cell morphological phenotypes associated with a transcriptomic query;Nucleic Acids Res,2018

5. Mirabelli, C. et al. Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19. Proc Natl Acad Sci U S A 118 (2021). https://doi.org:10.1073/pnas.2105815118

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3