SERS nanowire chip and machine learning enabled instant identification and classification of clinically relevant wild-type and antibiotic resistant bacteria at species and strain level

Author:

Das SathiORCID,Saxena KanchanORCID,Tinguely Jean-ClaudeORCID,Pal Arijit,Wickramasinghe Nima L.,Khezri AbdolrahmanORCID,Dubey VisheshORCID,Ahmed AzeemORCID,Vivekanandan PerumalORCID,Ahmad RafiORCID,Wadduwage Dushan N.ORCID,Ahluwalia Balpreet SinghORCID,Mehta Dalip SinghORCID

Abstract

ABSTRACTThe world health organization considers antimicrobial resistance (AMR) to be a critical global public health problem. Conventional culture-based methods that are used to detect and identify bacterial infection are slow. Thus, there is a growing need for the development of robust, cost-effective, and fast diagnostic solutions for the identification of pathogens. Surface-enhanced Raman spectroscopy (SERS) can be used to identify target analytes with sensitivity down to the single-molecule level. Here, we developed a SERS chip by optimizing the entire fabrication pipeline of the metal-assisted chemical etching (MACE) method. The MACE approach offers a large-scale, densely packed silver (Ag) nanostructure on top of silicon nanowires (Si-NWs) with a large aspect ratio that significantly enhances the Raman signal due to localised surface plasmonic enhancement. The optimised SERS chips exhibited sensitivity down to 10-12M concentration of R6G molecule and detected reproducible Raman spectra of bacteria down to a concentration of 100 colony forming units (CFU)/ml, which is a thousand times lower than the clinical threshold of bacterial infections like UTI (105CFU/ml). A Siamese neural network model was used to classify SERS Raman spectra from bacteria specimens. The trained model identified 12 different bacterial species, including those which are causative agents for tuberculosis and urinary tract infection (UTI). Next, the SERS chips and another Siamese neural network model were used to differentiate antibiotic-resistant strains from susceptible strains ofE. coli. The enhancement offered by SERS chip enabled acquisitions of Raman spectra of bacteria directly in the synthetic urine by spiking the sample with only 103CFU/mlE. coli. Thus, the present study lays the ground for the identification and quantification of bacteria on SERS chips, thereby offering a potential future use for rapid, reproducible, label-free, and low limit detection of clinical pathogens.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of bacterial DNA by surface enhanced Raman spectroscopy;Translational Biophotonics: Diagnostics and Therapeutics III;2023-08-11

2. Rapid identification of antimicrobial drug resistance strains of E-coli using SERS nanowire chip;Plasmonics in Biology and Medicine XX;2023-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3