SUMO interacting motif (SIM) of S100A1 is critical for S100A1 post-translational protein stability

Author:

Jebessa Zegeye H.ORCID,Glaser Manuel,Zhao Jemmy,Schneider Andrea,Seenivasan Ramkumar,Busch Martin,Ritterhoff Julia,Wade Rebecca C.,Most Patrick

Abstract

AbstractS100A1 is a small EF-type Ca2+sensor protein that belongs to the multigenic S100 protein family. It is abundantly expressed in cardiomyocytes (CMs) and has been described as a key regulator of CM performance due to its unique ability to interact with structural contractile proteins, regulators of cardiac Ca2+cycling, and mitochondrial proteins. However, our understanding of the molecular mechanisms regulating S100A1 protein levels is limited. We used the bioinformatics tool GPS-SUMO2.0 to identify a putative SUMO interacting motif (SIM) on S100A1. Consistently, a S100A1:SUMO interaction assay showed a Ca2+-dependent interaction of S100A1 with SUMO proteins. In neonatal rat ventricular myocytes (NRVM) and COS1 cells, S100A1 protein abundance increased in the presence of overexpressed SUMO1 without affecting the S100A1 mRNA transcript. We then generated S100A1 truncation mutants, where the SIM motif was removed by truncation or in which the core residues of the SIM motif (residues 77-79) were deleted or replaced by alanine. In COS1 cells and NRVM, overexpression of these S100A1 mutants led to elevated S100A1 mutant mRNA levels but failed to produce respective protein levels. Protein expression of these mutants could be rescued from degradation by addition of the proteasome inhibitor MG-132. By using an information-driven approach to dock the three-dimensional structures of S100A1 and SUMO, we predict a novel interaction mode between the SIM in S100A1 and SUMO. This study shows an important role of SUMO:SIM-mediated protein:protein interaction in the regulation of post-translational protein stability, and provides mechanistic insights into the indispensability of the core SIM for S100A1 post-translational stability.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3