A dual diffusion model enables 3D binding bioactive molecule generation and lead optimization given target pockets

Author:

Huang Lei,Xu Tingyang,Yu Yang,Zhao Peilin,Wong Ka-Chun,Zhang Hengtong

Abstract

ABSTRACTStructure-based generative chemistry aims to explore much bigger chemical space to design a ligand with high binding affinity to the target proteins; it is a critical step inde novocomputer-aided drug discovery. Traditionalin silicomethods suffer from calculation inefficiency and the performances of existing machine learning methods could be bottlenecked by the auto-regressive sampling strategy. To address these concerns, we herein have developed a novel conditional deep generative model, PMDM, for 3D molecule generation fitting specified target proteins. PMDM incorporates a dual equivariant diffusion model framework to leverage the local and global molecular dynamics to generate 3D molecules in a one-shot fashion. By considering the conditioned protein semantic information and spatial information, PMDM is able to generate chemically and conformationally valid molecules which suitably fit pocket holes. We have conducted comprehensive experiments to demonstrate that PMDM can generate drug-like, synthesis-accessible, novel, and high-binding affinity molecules targeting specific proteins, outperforming the state-of-the-art (SOTA) models in terms of multiple evaluation metrics. In addition, we perform chemical space analysis for generated molecules and lead compound optimization for SARS-CoV-2 main protease (Mpro) by only utilizing three atoms as the seed fragment. The experimental results implicate that the structures of generated molecules are rational compared to the reference molecules, and PMDM can generate massive bioactive molecules highly binding to the targeted proteins which are not included in the training set.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3