Abstract
ABSTRACTCardiovascular sequelae of severe acute respiratory syndrome (SARS) coronavirus-2 (CoV-2) disease 2019 (COVID-19) contribute to the complications of the disease. One potential complication is lung vascular remodeling, but the exact cause is still unknown. We hypothesized that endothelial TLR3 insufficiency contributes to lung vascular remodeling induced by SARS-CoV-2. In the lungs of COVID-19 patients and SARS-CoV-2 infected Syrian hamsters, we discovered thickening of the pulmonary artery media and microvascular rarefaction, which were associated with decreased TLR3 expression in lung tissue and pulmonary artery endothelial cells (ECs).In vitro, SARS-CoV-2 infection reduced endothelial TLR3 expression. Following infection with mouse-adapted (MA) SARS-CoV-2, TLR3 knockout mice displayed heightened pulmonary artery remodeling and endothelial apoptosis. Treatment with the TLR3 agonist polyinosinic:polycytidylic acid reduced lung tissue damage, lung vascular remodeling, and endothelial apoptosis associated with MA SARS-CoV-2 infection. In conclusion, repression of endothelial TLR3 is a potential mechanism of SARS-CoV-2 infection associated lung vascular remodeling and enhancing TLR3 signaling is a potential strategy for treatment.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献