Cryo-EM reveals how Hsp90 and FKBP immunophilins co-regulate the Glucocorticoid Receptor

Author:

Noddings Chari M.ORCID,Johnson Jill L.ORCID,Agard David A.ORCID

Abstract

AbstractHsp90 is an essential molecular chaperone responsible for the folding and activation of hundreds of ‘client’ proteins, including the glucocorticoid receptor (GR)1-3. Previously, we revealed that GR ligand binding activity is inhibited by Hsp70 and restored by Hsp90, aided by co-chaperones4. We then presented cryo-EM structures mechanistically detailing how Hsp70 and Hsp90 remodel the conformation of GR to regulate ligand binding5,6.In vivo, GR-chaperone complexes are found associated with numerous Hsp90 co-chaperones, but the most enigmatic have been the immunophilins FKBP51 and FKBP52, which further regulate the activity of GR and other steroid receptors7-9. A molecular understanding of how FKBP51 and FKBP52 integrate with the GR chaperone cycle to differentially regulate GR activationin vivois lacking due to difficulties reconstituting these interactions. Here, we present a 3.01 Å cryo-EM structure of the GR:Hsp90:FKBP52 complex, revealing, for the first time, that FKBP52 directly binds to the folded, ligand-bound GR using three novel interfaces, each of which we demonstrate are critical for FKBP52-dependent potentiation of GR activityin vivo. In addition, we present a 3.23 Å cryo-EM structure of the GR:Hsp90:FKBP51 complex, which, surprisingly, largely mimics the GR:Hsp90:FKBP52 structure. In both structures, FKBP51 and FKBP52 directly engage the folded GR and unexpectedly facilitate release of p23 through an allosteric mechanism. We also reveal that FKBP52, but not FKBP51, potentiates GR ligand bindingin vitro, in a manner dependent on FKBP52-specific interactions. Altogether, we reveal how FKBP51 and FKBP52 integrate into the GR chaperone cycle to advance GR to the next stage of maturation and how FKBP51 and FKBP52 compete for GR:Hsp90 binding, leading to functional antagonism.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3