Call detail record aggregation methodology impacts infectious disease models informed by human mobility

Author:

Gibbs HamishORCID,Musah Anwar,Seidu Omar,Ampofo William,Asiedu-Bekoe Franklin,Gray Jonathan,Adewole Wole A.,Cheshire James,Marks MichaelORCID,Eggo Rosalind M.ORCID

Abstract

AbstractThis paper demonstrates how two different methods used to calculate population-level mobility from Call Detail Records (CDR) produce varying predictions of the spread of epidemics informed by these data. Our findings are based on one CDR dataset describing inter-district movement in Ghana in 2021, produced using two different aggregation methodologies. One methodology, “all pairs,” is designed to retain long distance network connections while the other, “sequential” methodology is designed to accurately reflect the volume of travel between locations. We show how the choice of methodology feeds through models of human mobility to the predictions of a metapopulation SEIR model of disease transmission. We also show that this impact varies depending on the location of pathogen introduction and transmissibility. For central locations or highly transmissible diseases, we do not observe significant differences between aggregation methodologies on the predicted spread of disease. For less transmissible diseases or those introduced into remote locations, we find that the choice of aggregation methodology influences the speed of spatial spread as well as the size of the peak number of infections in individual districts. Our findings can help researchers and users of epidemiological models to understand how methodological choices at the level of model inputs may influence the results of models of infectious disease transmission, as well as the circumstances in which these choices do not alter model predictions.Author SummaryPredicting the sub-national spread of infectious disease requires accurate measurements of inter-regional travel networks. Often, this information is derived from the patterns of mobile device connections to the cellular network. This travel data is then used as an input to epidemiological models of infection transmission, defining the likelihood that disease is “exported” between regions. In this paper, we use one mobile device dataset collected in Ghana in 2021, aggregated according to two different methodologies which represent different aspects of inter-regional travel. We show how the choice of aggregation methodology leads to different predicted epidemics, and highlight the conditions under which models of infection transmission may be influenced by methodological choices in the aggregation of travel data used to parameterize these models. For example, we show how aggregation methodology changes predicted epidemics for less-transmissible infections and under certain models of human movement. We also highlight areas of relative stability, where aggregation choices do not alter predicted epidemics, such as cases where an infection is highly transmissible or is introduced into a central location.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3