Gene Expression Changes in Cultured Reactive Rat Astrocyte Models and Comparison to Device-Associated Effects in the Brain

Author:

Riggins Ti’Air E.,Whitsitt Quentin A.,Saxena Akash,Hunter Emani,Hunt Bradley,Thompson Cort H.,Moore Michael G.,Purcell Erin K.

Abstract

AbstractImplanted microelectrode arrays hold immense therapeutic potential for many neurodegenerative diseases. However, a foreign body response limits long-term device performance. Recent literature supports the role of astrocytes in the response to damage to the central nervous system (CNS) and suggests that reactive astrocytes exist on a spectrum of phenotypes, from beneficial to neurotoxic. The goal of our study was to gain insight into the subtypes of reactive astrocytes responding to electrodes implanted in the brain. In this study, we tested the transcriptomic profile of two reactive astrocyte culture models (cytokine cocktail or lipopolysaccharide, LPS) utilizing RNA sequencing, which we then compared to differential gene expression surrounding devices inserted into rat motor cortex via spatial transcriptomics. We interpreted changes in the genetic expression of the culture models to that of 24 hour, 1 week and 6 week rat tissue samples at multiple distances radiating from the injury site. We found overlapping expression of up to ∼250 genes betweenin vitromodels andin vivoeffects, depending on duration of implantation. Cytokine-induced cells shared more genes in common with chronically implanted tissue (≥1 week) in comparison to LPS-exposed cells. We revealed localized expression of a subset of these intersecting genes (e.g.,Serping1, Chi3l1, and Cyp7b1)in regions of device-encapsulating, glial fibrillary acidic protein (GFAP)-expressing astrocytes identified with immunohistochemistry. We applied a factorization approach to assess the strength of the relationship between reactivity markers and the spatial distribution of GFAP-expressing astrocytesin vivo. We also provide lists of hundreds of differentially expressed genes between reactive culture models and untreated controls, and we observed 311 shared genes between the cytokine induced model and the LPS-reaction induced control model. Our results show that comparisons of reactive astrocyte culture models with spatial transcriptomics data can reveal new biomarkers of the foreign body response to implantable neurotechnology. These comparisons also provide a strategy to assess the development ofin vitromodels of the tissue response to implanted electrodes.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3