Structural Interaction Fingerprints and Machine Learning for predicting and explaining binding of small molecule ligands to RNA

Author:

Szulc Natalia A.ORCID,Mackiewicz ZuzannaORCID,Bujnicki Janusz M.ORCID,Stefaniak FilipORCID

Abstract

ABSTRACTRibonucleic acids (RNA) play crucial roles in living organisms as they are involved in key processes necessary for proper cell functioning. Some RNA molecules, such as bacterial ribosomes and precursor messenger RNA, are targets of small molecule drugs, while others, e.g., bacterial riboswitches or viral RNA motifs are considered as potential therapeutic targets. Thus, the continuous discovery of new functional RNA increases the demand for developing compounds targeting them and for methods for analyzing RNA—small molecule interactions. We recently developed fingeRNAt - a software for detecting non-covalent bonds formed within complexes of nucleic acids with different types of ligands. The program detects several non-covalent interactions, such as hydrogen and halogen bonds, ionic, Pi, inorganic ion-and water-mediated, lipophilic interactions, and encodes them as computational-friendly Structural Interaction Fingerprint (SIFt). Here we present the application of SIFts accompanied by machine learning methods for binding prediction of small molecules to RNA targets. We show that SIFt-based models outperform the classic, general-purpose scoring functions in virtual screening. We discuss the aid offered by Explainable Artificial Intelligence in the analysis of the binding prediction models, elucidating the decision-making process, and deciphering molecular recognition processes.Key PointsStructural Interaction fingerprints (SIFts), combined with machine learning, were successfully used to develop activity models for ligands binding to RNA.SIFt-based models outperformed the classic, general-purpose scoring functions in virtual screening.Explainable Artificial Intelligence allowed us to understand the decision-making process and decipher molecular recognition processes in the analysis of RNA—ligand binding activity models.We provide a benchmark dataset based on ligands with known or putative binding activity toward six RNA targets. It can be readily used by the scientific community to test new algorithms of virtual screening on RNA—ligand complexes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3