Abstract
AbstractProteins that switch between two structural states as a function of environmental stimuli are widespread in nature. These proteins structurally transduce biochemical information in a manner analogous to how transistors control information flow in computing devices. Engineering challenges ranging from biological computing devices to molecular motors require such two-state switches, but designing these is an unsolved problem as it requires sculpting an energy landscape with two low-energy but structurally distinct conformations that can be modulated by external inputs. Here we describe a general design approach for creating “hinge” proteins that populate one distinct state in the absence of ligand and a second designed state in the presence of ligand. X-ray crystallography, electron microscopy, and double electron-electron resonance spectroscopy demonstrate that despite the significant structural differences, the two states are designed with atomic level accuracy. The kinetics and thermodynamics of effector binding can be finely tuned by modulating the free energy differences between the two states; when this difference becomes sufficiently small, we obtain bistable proteins that populate both states in the absence of effector, but collapse to a single state upon effector addition. Like the transistor, these switches now enable the design of a wide array of molecular information processing systems.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献