Design of stimulus-responsive two-state hinge proteins

Author:

Praetorius FlorianORCID,Leung Philip J. Y.ORCID,Tessmer Maxx H.ORCID,Broerman AdamORCID,Demakis CullenORCID,Dishman Acacia F.ORCID,Pillai ArvindORCID,Idris Abbas,Juergens DavidORCID,Dauparas JustasORCID,Li XintingORCID,Levine Paul M.ORCID,Lamb Mila,Ballard Ryanne K.ORCID,Gerben Stacey R.ORCID,Nguyen HannahORCID,Kang Alex,Sankaran BanumathiORCID,Bera Asim K.,Volkman Brian F.ORCID,Nivala JeffORCID,Stoll StefanORCID,Baker DavidORCID

Abstract

AbstractProteins that switch between two structural states as a function of environmental stimuli are widespread in nature. These proteins structurally transduce biochemical information in a manner analogous to how transistors control information flow in computing devices. Engineering challenges ranging from biological computing devices to molecular motors require such two-state switches, but designing these is an unsolved problem as it requires sculpting an energy landscape with two low-energy but structurally distinct conformations that can be modulated by external inputs. Here we describe a general design approach for creating “hinge” proteins that populate one distinct state in the absence of ligand and a second designed state in the presence of ligand. X-ray crystallography, electron microscopy, and double electron-electron resonance spectroscopy demonstrate that despite the significant structural differences, the two states are designed with atomic level accuracy. The kinetics and thermodynamics of effector binding can be finely tuned by modulating the free energy differences between the two states; when this difference becomes sufficiently small, we obtain bistable proteins that populate both states in the absence of effector, but collapse to a single state upon effector addition. Like the transistor, these switches now enable the design of a wide array of molecular information processing systems.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3