Abstract
ABSTRACTCollagen, the most abundant organic compound of vertebrate organisms, is a supramolecular, protein-made polymer. Details of its post-translational maturation largely determine the mechanical properties of connective tissues. Its assembly requires massive, heterogeneous prolyl-4-hydroxylation (P4H), catalyzed by Prolyl-4-hydroxylases (P4HA1-3), providing thermostability to its elemental, triple helical building block. So far, there was no evidence of tissue-specific regulation of P4H, nor of a differential substrate repertoire of P4HAs. Here, the post-translational modifications of collagen extracted from bone, skin, and tendon were compared, revealing lower hydroxylation of most GEP/GDP triplets, together with fewer other residue positions along collagen α chains, in the tendon. This regulation is mostly conserved in two distant homeotherm species, mouse and chicken. The comparison of detailed P4H patterns in both species suggests a dual mechanism of specificity.P4ha2expression is low in tendon and its genetic invalidation in the ATDC5 cellular model of collagen assembly specifically mimics the tendon-related P4H profile. Therefore, P4HA2 has a better ability than other P4HAs to hydroxylate the corresponding residue positions. Its local expression participates in determining the P4H profile, a novel aspect of the tissue specificities of collagen assembly.Data availabilityProteomics data are availableviaProteomeXchange with the identifier PXD039221. Reviewer account details:login: MSV000091002_reviewerpassword: P4HA2tendon.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献