Incorporating models of subcortical processing improves the ability to predict EEG responses to natural speech

Author:

Lindboom Elsa,Nidiffer Aaron,Carney Laurel H.ORCID,Lalor Edmund

Abstract

AbstractThe goal of describing how the human brain responds to complex acoustic stimuli has driven auditory neuroscience research for decades. Often, a systems-based approach has been taken, in which neurophysiological responses are modeled based on features of the presented stimulus. This includes a wealth of work modeling electroencephalogram (EEG) responses to complex acoustic stimuli such as speech. Examples of the acoustic features used in such modeling include the amplitude envelope and spectrogram of speech. These models implicitly assume a direct mapping from stimulus representation to cortical activity. However, in reality, the representation of sound is transformed as it passes through early stages of the auditory pathway, such that inputs to the cortex are fundamentally different from the raw audio signal that was presented. Thus, it could be valuable to account for the transformations taking place in lower-order auditory areas, such as the auditory nerve, cochlear nucleus, and inferior colliculus (IC) when predicting cortical responses to complex sounds. Specifically, because IC responses are more similar to cortical inputs than acoustic features derived directly from the audio signal, we hypothesized that linear mappings (temporal response functions; TRFs) fit to the outputs of an IC model would better predict EEG responses to speech stimuli. To this end, we modeled responses to the acoustic stimuli as they passed through the auditory nerve, cochlear nucleus, and inferior colliculus before fitting a TRF to the output of the modeled IC responses. Results showed that using model-IC responses in traditional systems analyses resulted in better predictions of EEG activity than using the envelope or spectrogram of a speech stimulus. Further, it was revealed that model-IC derived TRFs predict different aspects of the EEG than acoustic-feature TRFs, and combining both types of TRF models provides a more accurate prediction of the EEG response.x

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3