Transcriptomic impacts and potential routes of detoxification in a lampricide-tolerant teleost exposed to TFM and niclosamide

Author:

Lawrence M.J.ORCID,Grayson P.ORCID,Jeffrey J.D.,Docker M.F.,Garroway C.J.ORCID,Wilson J.M.,Manzon R.G.,Wilkie M.P.,Jeffries K.M.

Abstract

AbstractSea lamprey (Petromyzon marinus) control in the Laurentian Great Lakes of North America often relies on the application of 3-trifluoromethyl-4-nitrophenol (TFM) and niclosamide mixtures to kill larval sea lamprey. Selectivity of TFM against lampreys appears to be due to differential detoxification ability in these jawless fishes compared to bony fishes, particularly teleosts. However, the proximate mechanisms of tolerance to the TFM and niclosamide mixture and the mechanisms of niclosamide toxicity on its own are poorly understood, especially among non-target fishes. Here, we used RNA sequencing to identify specific mRNA transcripts and functional processes that responded to niclosamide or a TFM:niclosamide mixture in bluegill (Lepomis macrochirus). Bluegill were exposed to niclosamide or TFM:niclosamide mixture, along with a time-matched control group, and gill and liver tissues were sampled at 6, 12, and 24 h. We summarized the whole-transcriptome patterns through gene ontology (GO) term enrichment and through differential expression of detoxification genes. The niclosamide treatment resulted in an upregulation of several transcripts associated with detoxification (cyp, ugt, sult, gst), which may help explain the relatively high detoxification capacity in bluegill. Conversely, the TFM:niclosamide mixture resulted in an enrichment of processes related to arrested cell cycle and growth, and cell death alongside a diverse detoxification gene response. Detoxification of both lampricides likely involves the use of phase I and II biotransformation genes. Our findings strongly suggest that the unusually high tolerance of bluegill to lampricides is due to these animals having an inherently high capacity and flexible detoxification response to such compounds.

Publisher

Cold Spring Harbor Laboratory

Reference65 articles.

1. Barber, J. and Steeves, M. (2021). Sea lamprey control in the Great Lakes 2020. Great Lakes Fishery Commission.

2. Bills, T. D. and Marking, L. L. (1976). Toxicity of 3-trifluoromethyl-4-nitrophenol (TFM), 2’, 5-dichloro-4’-nitrosalicylanilide (Bayer 73), and a 98: 2 mixture to fingerlings of seven fish species and to eggs and fry of coho salmon. U.S. Fish and Wildlife Service.

3. The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) uncouples mitochondrial oxidative phosphorylation in both sea lamprey (Petromyzon marinus) and TFM-tolerant rainbow trout (Oncorhynchus mykiss);Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology,2011

4. Boogaard, M. A. and Johnson, D. A. (2006). Acute toxicity of TFM and a 99%TFM:1% niclosamide mixture to three genera of lampreys. Great Lakes Fishery Commission.

5. Acute Toxicity of TFM and a TFM/Niclosamide Mixture to Selected Species of Fish, Including Lake Sturgeon (Acipenser fulvescens) and Mudpuppies (Necturus maculosus), in Laboratory and Field Exposures;Journal of Great Lakes Research,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3