Impaired polyamine metabolism causes behavioral and neuroanatomical defects in a novel mouse model of Snyder-Robinson Syndrome

Author:

Akinyele Oluwaseun,Munir Anushe,Johnson Marie A.,Perez Megan S.,Gao Yuan,Foley Jackson R.,Wu Yijen,Murray-Stewart Tracy,Casero Robert A.,Bayir Hulya,Kemaladewi Dwi U.

Abstract

AbstractPolyamines (putrescine, spermidine, and spermine) are essential molecules for normal cellular functions and are subject to strict metabolic regulation. Mutations in the gene encoding spermine synthase (SMS) lead to accumulation of spermidine in an X-linked recessive disorder known as Snyder-Robinson syndrome (SRS). Presently, no treatments exist for this rare disease that manifests with a spectrum of symptoms including intellectual disability, developmental delay, thin habitus, and low muscle tone. The development of therapeutic interventions for SRS will require a suitable disease-specific animal model that recapitulates many of the abnormalities observed in patients.Here, we characterize the molecular, behavioral, and neuroanatomical features of a mouse model with a missense mutation inSmsgene that results in a glycine-to-serine substitution at position 56 (G56S) of the SMS protein. Mice harboring this mutation exhibit a complete loss of SMS protein and elevated spermidine/spermine ratio in skeletal muscles and the brain. In addition, the G56S mice demonstrate increased anxiety, impaired learning, and decreased explorative behavior in fear conditioning, Morris water maze, and open field tests, respectively. Furthermore, these mice failed to gain weight over time and exhibit abnormalities in brain structure and bone density. Transcriptomic analysis of the cerebral cortex revealed downregulation of genes associated with mitochondrial oxidative phosphorylation and ribosomal protein synthesis. Our findings also revealed impaired mitochondrial bioenergetics in fibroblasts isolated from the G56S mice, indicating a correlation between these processes in the affected mice. Collectively, our findings establish the first in-depth characterization of an SRS preclinical mouse model that identifies cellular processes that could be targeted for future therapeutic development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3