Dynamic DNA methylation turnover at the exit of pluripotency epigenetically primes gene regulatory elements for hematopoietic lineage specification

Author:

Parry AledORCID,Krueger ChristelORCID,Lohoff TimORCID,Wingett StevenORCID,Schoenfelder StefanORCID,Reik WolfORCID

Abstract

AbstractEpigenetic mechanisms govern developmental cell fate decisions, but how DNA methylation coordinates with chromatin structure and three-dimensional DNA folding to enact cell-type specific gene expression programmes remains poorly understood. Here, we use mouse embryonic stem and epiblast-like cells deficient for 5-methyl cytosine or its oxidative derivatives (5-hydroxy-, 5-formyl- and 5-carboxy-cytosine) to dissect the gene regulatory mechanisms that control cell lineage specification at the exit of pluripotency. Genetic ablation of either DNA methyltransferase (Dnmt) or Ten-eleven-translocation (Tet) activity yielded largely distinct sets of dysregulated genes, revealing divergent transcriptional defects upon perturbation of individual branches of the DNA cytosine methylation cycle. Unexpectedly, we found that disrupting DNA methylation or oxidation interferes with key enhancer features, including chromatin accessibility, enhancer-characteristic histone modifications, and long-range chromatin interactions with putative target genes. In addition to affecting transcription of select genes in pluripotent stem cells, we observe impaired enhancer priming, including a loss of three-dimensional interactions, at regulatory elements associated with key lineage-specifying genes that are required later in development, as we demonstrate for the key hematopoietic genesKlf1andLyl1. Consistently, we observe impaired transcriptional activation of blood genes during embryoid body differentiation of knockout cells. Our findings identify a novel role for the dynamic turnover of DNA methylation at the exit of pluripotency to establish and maintain chromatin states that epigenetically prime enhancers for later activation during developmental cell diversification.HighlightsWe perform a detailed epigenetic characterisation of the mouse embryonic stem cell (ESC) to epiblast-like cell (EpiLC) transition in wild type,Tettriple-knockout (TKO) andDnmtTKO lines and develop a novel clustering approach to interrogate the data.TetTKO reduces H3K4me1 and H3K27ac levels across enhancer elements upon pluripotency exit whilstDnmtTKO affects only H3K4me1 levels, suggesting a novel role for oxidative derivatives in H3K4me1 deposition.TetTKO andDnmtTKO affect enhancer priming in EpiLCs which is associated with failure to upregulate hematopoietic genes upon differentiation.Long-range chromosomal interactions between primed enhancers and their target genes are weakened in bothDnmtandTetTKO.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3