Meiotic Cells Escape Prolonged Spindle Checkpoint Activity Through Premature Silencing and Slippage

Author:

MacKenzie Anne,Vicory Victoria,Lacefield SoniORCID

Abstract

ABSTRACTTo prevent chromosome mis-segregation, a surveillance mechanism known as the spindle checkpoint delays the cell cycle if kinetochores are not attached to spindle microtubules, allowing the cell additional time to correct improper attachments. During spindle checkpoint activation, checkpoint proteins bind the unattached kinetochore and send a diffusible signal to inhibit the anaphase promoting complex/cyclosome (APC/C). Previous work has shown that mitotic cells with depolymerized microtubules can escape prolonged spindle checkpoint activation in a process called mitotic slippage. During slippage, spindle checkpoint proteins bind unattached kinetochores, but the cells cannot maintain the checkpoint arrest. We asked if meiotic cells had as robust of a spindle checkpoint response as mitotic cells and whether they also undergo slippage after prolonged spindle checkpoint activity. We performed a direct comparison between mitotic and meiotic budding yeast cells that signal the spindle checkpoint due to a lack of either kinetochore-microtubule attachments or due to a loss of tension-bearing attachments. We find that the spindle checkpoint is not as robust in meiosis I or meiosis II compared to mitosis, overcoming a checkpoint arrest approximately 150 minutes earlier in meiosis. In addition, cells in meiosis I escape spindle checkpoint signaling using two mechanisms, silencing the checkpoint at the kinetochore and through slippage. We propose that meiotic cells undertake developmentally-regulated mechanisms to prevent persistent spindle checkpoint activity to ensure the production of gametes.AUTHOR SUMMARYMitosis and meiosis are the two major types of cell divisions. Mitosis gives rise to genetically identical daughter cells, while meiosis is a reductional division that gives rise to gametes. Cell cycle checkpoints are highly regulated surveillance mechanisms that prevent cell cycle progression when circumstances are unfavorable. The spindle checkpoint promotes faithful chromosome segregation to safeguard against aneuploidy, in which cells have too many or too few chromosomes. The spindle checkpoint is activated at the kinetochore and then diffuses to inhibit cell cycle progression. Although the checkpoint is active in both mitosis and meiosis, most studies involving checkpoint regulation have been performed in mitosis. By activating the spindle checkpoint in both mitosis and meiosis in budding yeast, we show that cells in meiosis elicit a less persistent checkpoint signal compared to cells in mitosis. Further, we show that cells use distinct mechanisms to escape the checkpoint in mitosis and meiosis I. While cells in mitosis and meiosis II undergo anaphase onset while retaining checkpoint proteins at the kinetochore, cells in meiosis I prematurely lose checkpoint protein localization at the kinetochore. If the mechanism to remove the checkpoint components from the kinetochore is disrupted, meiosis I cells can still escape checkpoint activity. Together, these results highlight that cell cycle checkpoints are differentially regulated during meiosis to avoid long delays and to allow gametogenesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3