Identification of diverse antibiotic resistant bacteria in agricultural soil with H218O stable isotope probing and metagenomics

Author:

Hernández Marcela,Roy Shamik,Keevil C. William,Dumont Marc G.

Abstract

AbstractBackgroundIn this study, we aimed to identify bacteria able to grow in the presence of several antibiotics including the ultra-broad-spectrum antibiotic meropenem in a British agricultural soil, by combining DNA stable isotope probing (SIP) with high throughput sequencing. Soil was incubated with cefotaxime, meropenem, ciprofloxacin and trimethoprim in18O-water. Metagenomes and the V4 region of the 16S rRNA gene from the labelled “heavy” and the unlabelled “light” SIP fractions were sequenced.ResultsAfter incubations, an increase of the 16S rRNA copy numbers in the “heavy” fractions of the treatments with18O-water compared with their controls was detected. The treatments resulted in differences in the community composition of bacteria. Members of the phyla Acidobacteriota (formally Acidobacteria) are highly abundant after two days of incubation with antibiotics. Several Pseudomonadota (formally Proteobacteria) includingStenotrophomonaswere prominent after four days of incubation. Furthermore, a metagenome-assembled genome (MAG-1) from the genusStenotrophomonas(90.7% complete) was retrieved from the heavy fraction. Finally, 11 antimicrobial resistance genes (ARGs) were identified in the unbinned-assembled heavy fractions, and 10 ARGs were identified in MAG-1. On the other hand, only two ARGs from the unbinned-assembled light fractions were identified.ConclusionsThe results indicate that both non-pathogenic soil-dwelling bacteria as well as potential clinical pathogens are present in this agricultural soil, and several ARGs were identified from the labelled communities, but it is still unclear if horizontal gene transfer between these groups can occur.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3