Increased mitochondrial surface area and cristae density in the skeletal muscle of strength athletes

Author:

Botella JavierORCID,Schytz Camilla T.ORCID,Pehrson Thomas F.,Hokken Rune,Laugesen Simon,Aagaard PerORCID,Suetta CharlotteORCID,Christensen Britt,Ørtenblad NielsORCID,Nielsen JoachimORCID

Abstract

AbstractMitochondria are the cellular organelles responsible for resynthesising the majority of ATP. In skeletal muscle, there is an increased ATP turnover during resistance exercise to sustain the energetic demands of muscle contraction. Despite this, little is known regarding the mitochondrial characteristics of chronically strength-trained individuals and any potential pathways regulating the strength-specific mitochondrial remodelling. Here, we investigated the mitochondrial structural characteristics in skeletal muscle of strength athletes and age-matched untrained controls. The mitochondrial pool in strength athletes was characterised by increased mitochondrial cristae density, decreased mitochondrial size, and increased surface-to-volume ratio, despite similar mitochondrial volume density. We also provide a fibre-type and compartment specific assessment of mitochondria morphology in human skeletal muscle, which reveals across groups a compartment-specific influence on mitochondrial morphology that is largely independent of fibre-type. Furthermore, we show that resistance exercise leads to signs of mild mitochondrial stress, without an increase in the number of damaged mitochondria. Using publicly available transcriptomic data we show that acute resistance exercise increases the expression of markers of mitochondrial biogenesis, fission, and mitochondrial unfolded protein responses (UPRmt). Further, we observed an enrichment of the UPRmtin the basal transcriptome of strength-trained individuals. Together, these findings show that strength athletes possess a unique mitochondrial remodelling, which minimises the space required for mitochondria. We propose that the concurrent activation of markers of mitochondrial biogenesis and mitochondrial remodelling pathways (fission and UPRmt) with resistance exercise may be partially responsible for the observed mitochondrial phenotype of strength athletes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3