3D genome organization around nuclear speckles drives mRNA splicing efficiency

Author:

Bhat PrashantORCID,Chow Amy,Emert BenjaminORCID,Ettlin OliviaORCID,Quinodoz Sofia A.ORCID,Takei YodaiORCID,Huang WesleyORCID,Blanco Mario R.ORCID,Guttman MitchellORCID

Abstract

The nucleus is highly organized such that factors involved in transcription and processing of distinct classes of RNA are organized within specific nuclear bodies. One such nuclear body is the nuclear speckle, which is defined by high concentrations of protein and non-coding RNA regulators of pre-mRNA splicing. What functional role, if any, speckles might play in the process of mRNA splicing remains unknown. Here we show that genes localized near nuclear speckles display higher spliceosome concentrations, increased spliceosome binding to their pre-mRNAs, and higher co-transcriptional splicing levels relative to genes that are located farther from nuclear speckles. We show that directed recruitment of a pre-mRNA to nuclear speckles is sufficient to drive increased mRNA splicing levels. Finally, we show that gene organization around nuclear speckles is highly dynamic with differential localization between cell types corresponding to differences in Pol II occupancy. Together, our results integrate the longstanding observations of nuclear speckles with the biochemistry of mRNA splicing and demonstrate a critical role for dynamic 3D spatial organization of genomic DNA in driving spliceosome concentrations and controlling the efficiency of mRNA splicing

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3