RNA-to-image multi-cancer synthesis using cascaded diffusion models

Author:

Carrillo-Perez FranciscoORCID,Pizurica Marija,Zheng YuanningORCID,Nandi Tarak Nath,Madduri Ravi,Shen Jeanne,Gevaert OlivierORCID

Abstract

AbstractData scarcity presents a significant obstacle in the field of biomedicine, where acquiring diverse and sufficient datasets can be costly and challenging. Synthetic data generation offers a potential solution to this problem by expanding dataset sizes, thereby enabling the training of more robust and generalizable machine learning models. Although previous studies have explored synthetic data generation for cancer diagnosis, they have predominantly focused on single modality settings, such as whole-slide image tiles or RNA-Seq data. To bridge this gap, we propose a novel approach, RNA-Cascaded-Diffusion-Model or RNA-CDM, for performing RNA-to-image synthesis in a multi-cancer context, drawing inspiration from successful text-to-image synthesis models used in natural images. In our approach, we employ a variational auto-encoder to reduce the dimensionality of a patient’s gene expression profile, effectively distinguishing between different types of cancer. Subsequently, we employ a cascaded diffusion model to synthesize realistic whole-slide image tiles using the latent representation derived from the patient’s RNA-Seq data. Our results demonstrate that the generated tiles accurately preserve the distribution of cell types observed in real-world data, with state-of-the-art cell identification models successfully detecting important cell types in the synthetic samples. Furthermore, we illustrate that the synthetic tiles maintain the cell fraction observed in bulk RNA-Seq data and that modifications in gene expression affect the composition of cell types in the synthetic tiles. Next, we utilize the synthetic data generated by RNA-CDM to pretrain machine learning models and observe improved performance compared to training from scratch. Our study emphasizes the potential usefulness of synthetic data in developing machine learning models in sarce-data settings, while also highlighting the possibility of imputing missing data modalities by leveraging the available information. In conclusion, our proposed RNA-CDM approach for synthetic data generation in biomedicine, particularly in the context of cancer diagnosis, offers a novel and promising solution to address data scarcity. By generating synthetic data that aligns with real-world distributions and leveraging it to pretrain machine learning models, we contribute to the development of robust clinical decision support systems and potential advancements in precision medicine.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Avaliando o Desempenho de Modelos Generativos de Dados para Classificação de Notícias Falsas;Anais do XI Encontro Nacional de Computação dos Institutos Federais (EnCompIF 2024);2024-07-21

2. Data Augmentation Based on DiscrimDiff for Histopathology Image Classification;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3