Abstract
AbstractAging is associated with progressive phenotypic changes over time. Virtually all cellular phenotypes are produced by proteins and structural alterations in proteins can lead to age-related diseases. Nonetheless, comprehensive knowledge of proteins undergoing structural-functional changes during cellular aging and their contribution to age-related phenotypes is lacking. Here, we conducted proteome-wide analysis of early age-related protein structural changes in budding yeast using limited proteolysis-mass spectrometry. The results, compiled in online ProtAge-catalog, unravelled age-related functional changes in regulators of translation, protein folding and amino acid metabolism. Mechanistically, we found that folded glutamate synthase Glt1 polymerizes into supramolecular self-assemblies during aging causing breakdown of cellular amino acid homeostasis. Inhibiting Glt1 polymerization by mutating the polymerization interface restored amino acid levels in aged cells, attenuated mitochondrial dysfunction and led to life span extension. Altogether, this comprehensive map of protein structural changes enables identifying novel mechanisms of age-related phenotypes and offers opportunities for their reversal.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献