Abstract
AbstractHematopoietic mutations in epigenetic regulators like DNA methyltransferase 3 alpha (DNMT3A) drive clonal hematopoiesis of indeterminate potential (CHIP) and are associated with adverse prognosis in patients with heart failure (HF). The interactions between CHIP-mutated cells and other cardiac cell types remain unknown.Here, we identify fibroblasts as potential interaction partners of CHIP-mutated monocytes using combined transcriptomic data from peripheral blood mononuclear cells of HF patients with and without CHIP and the cardiac tissue. We demonstrate that CHIP augments macrophage-to-cardiac fibroblasts interactions. Mechanistically, the secretome ofDNMT3A-silenced monocytes leads to myofibroblast activation, partially through epidermal growth factor (EGFR) signaling. Harboring DNMT3A CHIP-driver mutations is associated with increased cardiac interstitial fibrosis in mice and patients, and, thereby, may contribute to the poor outcome.These findings not only identify a novel pathway of DNMT3A CHIP-driver mutation-induced instigation and progression of HF, but may also provide a rationale for the development of new anti-fibrotic strategies.Graphical abstract
Publisher
Cold Spring Harbor Laboratory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献