Human Cryptochrome1 dampens homologous recombination at nightfall

Author:

Romero-Franco Amador,Checa-Rodríguez CintiaORCID,Castellano-Pozo MaikelORCID,Miras HectorORCID,Wals AmadeoORCID,Huertas PabloORCID

Abstract

AbstractThe maintenance of genomic stability is essential for cellular and organismal survival and fitness. Thus, when DNA gets damaged, is essential to repair it in the most accurate fashion. Among different DNA lesions, DNA double strand breaks are specially challenging. An exquisite regulatory network reacts to local and global cues to control the choice between different DNA double strand break repair mechanisms to maximize genomic integrity. Such regulation relies mostly at the level of DNA end resection, the initial steps of the homologous recombination repair pathway. On the other hand, most cellular and organismal activities follow a 24 h oscillation known as the circadian cycle. Such repetitive changes are controlled by an intrinsic, molecular clock built-in at the cellular level which core components are the heterodimers BMAL1-CLOCK and CRY-PER. These inherent rhythms control many different aspects of the cellular metabolism, including the fate of many different DNA transactions. Here we have explored the regulation of the choice between different DNA double strand break repair pathways along the circadian cycle. We observed that DNA end resection shows a circadian oscillation, with a peak at dawn followed by a progressive reduction until dusk. Such regulations depend on the cellular levels of the circadian clock core component CRY1. Consequently, repair by homologous recombination mirrors CRY1 expression levels. Such modulation is controlled through the circadian regulation of the anti-resection activity, but not the protein levels, of CCAR2, that limits CtIP-mediated resection preferentially at nightfall. Additionally, such regulation requires a crosstalk between the DNA damage-dependent phosphorylation of CRY1 by the kinase DNA-PK. Finally, such regulation has an impact in cancer progression and response to radiation therapy of specific tumors.One sentence summaryCCAR2-dependent inhibition of DNA end resection and homologous recombination is controlled by the intrinsic cellular circadian clock

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3