Author:
Emani S,Kan A,Storms T,Bonanno S,Law J,Ray S,Joshi N
Abstract
AbstractMaximizing protein secretion is an important target in the design of engineered living systems. In this paper, we characterize a tradeoff between cell growth and per cell protein secretion in the curli biofilm secretion system of E Coli Nissile 1917. Initial characterization using 24-hour continuous growth and protein production monitoring confirms decreased growth rates at high induction leading to a local maximum in total protein production at intermediate induction. Propidium iodide staining at the endpoint indicates that cellular death is a dominant cause of growth reduction. Assaying variants with combinatorial constructs of inner and outer membrane secretion tags, we find that diminished growth at high production is specific to secretory variants associated with accumulation of protein containing the outer membrane transport tag in the periplasmic space. RNA sequencing experiments indicate upregulation of known periplasmic stress response genes in the highly secreting variant, further implicating periplasmic stress in the growth-secretion tradeoff. Overall, these results motivate additional strategies for optimizing total protein production and longevity of secretory engineered living systems.
Publisher
Cold Spring Harbor Laboratory