Inspiration of SARS-CoV-2 envelope protein mutations on pathogenicity of Omicron XBB

Author:

Wang Yi,Ji Hongying,Zuo Xiaoli,Xia Bingqing,Gao Zhaobing

Abstract

AbstractPredicting pathogenicity of Omicron sub-variants is critical for assessing disease dynamics and developing public health strategies. As an important virulence factor, SARS-CoV-2 envelope protein (2-E) causes cell death and acute respiratory distress syndrome (ARDS)-like pathological damages. Evaluation of 2-E mutations might offer clues to pathogenicity forecast. Here, the frequency and cell lethality of 92 mutations of 2-E in five early “variants of concern” (VOCs, Alpha, Beta, Gamma, Delta, and Omicron BA.1, BA.2, BA.3, BA.4, and BA.5) were analyzed, which could be divided into three classes. Most (87) mutations belong to Class I, no obvious frequency changes. Class II consists of 2 mutations, exhibiting enhanced cell lethality but decreased frequency. The rest 3 mutations in Class III were characterized by attenuated cell lethality and increased frequency. Remarkably, the Class II mutations are always observed in the VOCs with high disease severity while the Class III mutations are highly conserved in the VOCs with weakened pathogenicity. For example, P71L, the most lethal mutation, dropped to nearly 0.00% in the milder Omicrons from 99.12% in Beta, while the less lethal mutation T9I, sharply increased to 99.70% in BA.1 and is highly conserved in BA.1-5. Accordingly, we proposed that some key 2-E mutations are pathogenicity markers of the virus. Notably, the highly contagious Omicron XBB retained T9I also. In addition, XBB gained a new dominant-negative mutation T11A with frequency 90.52%, exhibiting reduced cell lethality, cytokine induction and viral production capabilitiesin vitro, and particularly weakened lung damages in mice. No mutations with enhanced cell lethality were observed in XBB. These clues imply a further weakened pathogenicity of XBB among Omicron sub-variants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3