Bioen-OSMOSE: A bioenergetic marine ecosystem model with physiological response to temperature and oxygen

Author:

Morell AlaiaORCID,Shin Yunne-JaiORCID,Barrier NicolasORCID,Travers-Trolet MorganeORCID,Halouani GhassenORCID,Ernande BrunoORCID

Abstract

ABSTRACTMarine ecosystem models have been used to project the impacts of climate-induced changes in temperature and oxygen on biodiversity mainly through changes in species spatial distributions and primary production. However, fish populations may also respond to climatic pressures via physiological changes, leading to modifications in their life history that could either mitigate or worsen the consequences of climate change.Building on the individual-based multispecies ecosystem model OSMOSE, Bioen-OSMOSE has been developed to account for high trophic levels’ physiological responses to temperature and oxygen in future climate projections. This paper presents an overview of the Bioen-OSMOSE model, mainly detailing the new developments. These consist in the implementation of a bioenergetic sub-model that mechanistically describes somatic growth, sexual maturation and reproduction as they emerge from the energy fluxes sustained by food intake under the hypotheses of a biphasic growth model and plastic maturation age and size represented by a maturation reaction norm. These fluxes depend on temperature and oxygen concentration, thus allowing plastic physiological responses to climate change.To illustrate the capabilities of Bioen-OSMOSE to represent realistic ecosystem dynamics, the model is applied to the North Sea ecosystem. The model outputs are confronted with population biomass, catch, maturity ogive, mean size-at-age and diet data of each species of the fish community. A first exploration of current species spatial variability in response to temperature or oxygen is presented in this paper. The model succeeds in reproducing observations, with good performances for all indicators.This new model development opens the scope for new fields of research such as the exploration of seasonal or spatial variation in life history in response to biotic and abiotic factors at the individual, population and community levels. Understanding such variability is crucial to improve our knowledge on potential climate change impacts on marine ecosystems and to make more reliable projections under climate change scenarios.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3